第 1 章 了解 Web 及网络基础
为了理解 HTTP,我们有必要事先了解一下 TCP/IP 协议族
网络基础 TCP/IP
通常使用的网络(包括互联网)是在 TCP/IP 协议族的基础上运作 的。而 HTTP 属于它内部的一个子集。
TCP/IP 协议族
计算机与网络设备要相互通信,双方就必须基于相同的方法。比如, 如何探测到通信目标、由哪一边先发起通信、使用哪种语言进行通 信、怎样结束通信等规则都需要事先确定。不同的硬件、操作系统之 间的通信,所有的这一切都需要一种规则。而我们就把这种规则称为 协议(protocol)。
TCP/IP 是互联网相关的各类协议族的总称
TCP/IP 的分层管理
TCP/IP 协议族里重要的一点就是分层。TCP/IP 协议族按层次分别分 为以下 4 层:应用层、传输层、网络层和数据链路层。
- 应用层
应用层决定了向用户提供应用服务时通信的活动。
TCP/IP 协议族内预存了各类通用的应用服务。比如,FTP(File Transfer Protocol,文件传输协议)和 DNS(Domain Name System,域 名系统)服务就是其中两类。 HTTP 协议也处于该层。 - 传输层
传输层对上层应用层,提供处于网络连接中的两台计算机之间的数据 传输。
在传输层有两个性质不同的协议:TCP(Transmission Control Protocol,传输控制协议)和 UDP(User Data Protocol,用户数据报 协议)。 - 网络层(又名网络互连层)
网络层用来处理在网络上流动的数据包。数据包是网络传输的最小数 据单位。该层规定了通过怎样的路径(所谓的传输路线)到达对方计 算机,并把数据包传送给对方。
与对方计算机之间通过多台计算机或网络设备进行传输时,网络层所 起的作用就是在众多的选项内选择一条传输路线。 - 链路层(又名数据链路层,网络接口层)
用来处理连接网络的硬件部分。包括控制操作系统、硬件的设备驱 动、NIC(Network Interface Card,网络适配器,即网卡),及光纤等 物理可见部分(还包括连接器等一切传输媒介)。硬件上的范畴均在 链路层的作用范围之内。
TCP/IP 通信传输流
利用 TCP/IP 协议族进行网络通信时,会通过分层顺序与对方进行通 信。发送端从应用层往下走,接收端则往应用层往上走。
我们用 HTTP 举例来说明,首先作为发送端的客户端在应用层 (HTTP 协议)发出一个想看某个 Web 页面的 HTTP 请求。 接着,为了传输方便,在传输层(TCP 协议)把从应用层处收到的数 据(HTTP 请求报文)进行分割,并在各个报文上打上标记序号及端 口号后转发给网络层。
在网络层(IP 协议),增加作为通信目的地的 MAC 地址后转发给链 路层。这样一来,发往网络的通信请求就准备齐全了。
接收端的服务器在链路层接收到数据,按序往上层发送,一直到应用 层。当传输到应用层,才能算真正接收到由客户端发送过来的 HTTP 请求。
发送端在层与层之间传输数据时,每经过一层时必定会被打上一个该 层所属的首部信息。反之,接收端在层与层传输数据时,每经过一层 时会把对应的首部消去。
这种把数据信息包装起来的做法称为封装(encapsulate)。
与 HTTP 关系密切的协议 : IP、TCP 和 DNS
负责传输的 IP 协议
IP(Internet Protocol 网际协议)协议的作用是把各种数据包传送给对方。而要保证确实传送到对方那里,则需要满足各类条件。
其中两个重要的条件是
- IP 地址
- MAC 地址(Media Access Control Address)
IP 地址指明了节点被分配到的地址,MAC 地址是指网卡所属的固定 地址。IP 地址可以和 MAC 地址进行配对。IP 地址可变换,但 MAC 地址基本上不会更改。
确保可靠性的 TCP 协议
按层次分,TCP 位于传输层,提供可靠的字节流服务。
所谓的字节流服务(Byte Stream Service)是指,为了方便传输,将大块数据分割成以报文段(segment)为单位的数据包进行管理。而可靠的传输服务是指,能够把数据准确可靠地传给对方。一言以蔽之, TCP 协议为了更容易传送大数据才把数据分割,而且 TCP 协议能够确认数据最终是否送达到对方。
为了准确无误地将数据送达目标处,TCP 协议采用了三次握手 (three-way handshaking)策略。
握手过程中使用了 TCP 的标志(flag) —— SYN(synchronize) 和 ACK(acknowledgement)。发送端首先发送一个带 SYN 标志的数据包给对方。接收端收到后, 回传一个带有 SYN/ACK 标志的数据包以示传达确认信息。最后,发送端再回传一个带 ACK 标志的数据包,代表“握手”结束。 若在握手过程中某个阶段莫名中断,TCP 协议会再次以相同的顺序发 送相同的数据包。
除了上述三次握手,TCP 协议还有其他各种手段来保证通信的可靠性。
负责域名解析的 DNS 服务
DNS(Domain Name System)服务是和 HTTP 协议一样位于应用层的协议。它提供域名到 IP 地址之间的解析服务。
DNS 协议提供通过域名 查找 IP 地址,或逆向从 IP 地址反查域名的服务
各种协议与 HTTP 协议的关系
URI 和 URL
与 URI(统一资源标识符)相比,我们更熟悉 URL(Uniform Resource Locator,统一资源定位符)。
统一资源标识符
URI 是 Uniform Resource Identifier 的缩写。RFC2396 分别对这 3 个单词进行了如下定义。
- Uniform
规定统一的格式可方便处理多种不同类型的资源,而不用根据上下文环境来识别资源指定的访问方式。另外,加入新增的协议方案(如 http: 或 ftp:)也更容易。
- Resource
资源的定义是“可标识的任何东西”。除了文档文件、图像或服务(例如当天的天气预报)等能够区别于其他类型的,全都可作为资源。另外,资源不仅可以是单一的,也可以是多数的集合体。
- Identifier
表示可标识的对象。也称为标识符。
综上所述,URI 就是由某个协议方案表示的资源的定位标识符。协议方案是指访问资源所使用的协议类型名称。
采用 HTTP 协议时,协议方案就是 http。除此之外,还有 ftp、mailto、telnet、file 等。
URI 格式
表示指定的 URI,要使用涵盖全部必要信息的绝对 URI、绝对 URL 以及相对 URL。相对 URL,是指从浏览器中基本 URI 处指定的 URL, 形如 /image/logo.gif。
让我们先来了解一下绝对 URI 的格式。
- 协议方案
使用 http: 或 https: 等协议方案名获取访问资源时要指定协议类型。不区分字母大小写,最后附一个冒号(:)。 也可使用 data: 或 javascript: 这类指定数据或脚本程序的方案名。 - 登录信息(认证)
指定用户名和密码作为从服务器端获取资源时必要的登录信息(身份 认证)。此项是可选项。 - 服务器地址
使用绝对 URI 必须指定待访问的服务器地址。地址可以是类似 hackr.jp 这种 DNS 可解析的名称,或是 192.168.1.1 这类 IPv4 地址名,还可以是 [0:0:0:0:0:0:0:1] 这样用方括号括起来的 IPv6 地址名。 - 服务器端口号
指定服务器连接的网络端口号。此项也是可选项,若用户省略则自动 使用默认端口号。 - 带层次的文件路径
指定服务器上的文件路径来定位特指的资源。这与 UNIX 系统的文件目录结构相似。 - 查询字符串
针对已指定的文件路径内的资源,可以使用查询字符串传入任意参数。此项可选。 - 片段标识符
使用片段标识符通常可标记出已获取资源中的子资源(文档内的某个位置)。但在 RFC 中并没有明确规定其使用方法。该项也为可选项。