第 1 章 了解 Web 及网络基础

为了理解 HTTP,我们有必要事先了解一下 TCP/IP 协议族

网络基础 TCP/IP

通常使用的网络(包括互联网)是在 TCP/IP 协议族的基础上运作 的。而 HTTP 属于它内部的一个子集。

TCP/IP 协议族

计算机与网络设备要相互通信,双方就必须基于相同的方法。比如, 如何探测到通信目标、由哪一边先发起通信、使用哪种语言进行通 信、怎样结束通信等规则都需要事先确定。不同的硬件、操作系统之 间的通信,所有的这一切都需要一种规则。而我们就把这种规则称为 协议(protocol)。

TCP/IP 是互联网相关的各类协议族的总称

TCP/IP 的分层管理

TCP/IP 协议族里重要的一点就是分层。TCP/IP 协议族按层次分别分 为以下 4 层:应用层、传输层、网络层和数据链路层。

  • 应用层
    应用层决定了向用户提供应用服务时通信的活动。
    TCP/IP 协议族内预存了各类通用的应用服务。比如,FTP(File Transfer Protocol,文件传输协议)和 DNS(Domain Name System,域 名系统)服务就是其中两类。 HTTP 协议也处于该层。
  • 传输层
    传输层对上层应用层,提供处于网络连接中的两台计算机之间的数据 传输。
    在传输层有两个性质不同的协议:TCP(Transmission Control Protocol,传输控制协议)和 UDP(User Data Protocol,用户数据报 协议)。
  • 网络层(又名网络互连层)
    网络层用来处理在网络上流动的数据包。数据包是网络传输的最小数 据单位。该层规定了通过怎样的路径(所谓的传输路线)到达对方计 算机,并把数据包传送给对方。
    与对方计算机之间通过多台计算机或网络设备进行传输时,网络层所 起的作用就是在众多的选项内选择一条传输路线。
  • 链路层(又名数据链路层,网络接口层)
    用来处理连接网络的硬件部分。包括控制操作系统、硬件的设备驱 动、NIC(Network Interface Card,网络适配器,即网卡),及光纤等 物理可见部分(还包括连接器等一切传输媒介)。硬件上的范畴均在 链路层的作用范围之内。

TCP/IP 通信传输流

通信传输流
利用 TCP/IP 协议族进行网络通信时,会通过分层顺序与对方进行通 信。发送端从应用层往下走,接收端则往应用层往上走。
我们用 HTTP 举例来说明,首先作为发送端的客户端在应用层 (HTTP 协议)发出一个想看某个 Web 页面的 HTTP 请求。 接着,为了传输方便,在传输层(TCP 协议)把从应用层处收到的数 据(HTTP 请求报文)进行分割,并在各个报文上打上标记序号及端 口号后转发给网络层。

在网络层(IP 协议),增加作为通信目的地的 MAC 地址后转发给链 路层。这样一来,发往网络的通信请求就准备齐全了。
接收端的服务器在链路层接收到数据,按序往上层发送,一直到应用 层。当传输到应用层,才能算真正接收到由客户端发送过来的 HTTP 请求。
封装
发送端在层与层之间传输数据时,每经过一层时必定会被打上一个该 层所属的首部信息。反之,接收端在层与层传输数据时,每经过一层 时会把对应的首部消去。
这种把数据信息包装起来的做法称为封装(encapsulate)。

与 HTTP 关系密切的协议 : IP、TCP 和 DNS

负责传输的 IP 协议

IP(Internet Protocol 网际协议)协议的作用是把各种数据包传送给对方。而要保证确实传送到对方那里,则需要满足各类条件。
其中两个重要的条件是

  • IP 地址
  • MAC 地址(Media Access Control Address)
    IP 地址指明了节点被分配到的地址,MAC 地址是指网卡所属的固定 地址。IP 地址可以和 MAC 地址进行配对。IP 地址可变换,但 MAC 地址基本上不会更改。

确保可靠性的 TCP 协议

按层次分,TCP 位于传输层,提供可靠的字节流服务。
所谓的字节流服务(Byte Stream Service)是指,为了方便传输,将大块数据分割成以报文段(segment)为单位的数据包进行管理。而可靠的传输服务是指,能够把数据准确可靠地传给对方。一言以蔽之, TCP 协议为了更容易传送大数据才把数据分割,而且 TCP 协议能够确认数据最终是否送达到对方。
为了准确无误地将数据送达目标处,TCP 协议采用了三次握手 (three-way handshaking)策略。
握手过程中使用了 TCP 的标志(flag) —— SYN(synchronize) 和 ACK(acknowledgement)。发送端首先发送一个带 SYN 标志的数据包给对方。接收端收到后, 回传一个带有 SYN/ACK 标志的数据包以示传达确认信息。最后,发送端再回传一个带 ACK 标志的数据包,代表“握手”结束。 若在握手过程中某个阶段莫名中断,TCP 协议会再次以相同的顺序发 送相同的数据包。
三次握手
除了上述三次握手,TCP 协议还有其他各种手段来保证通信的可靠性。

负责域名解析的 DNS 服务

DNS(Domain Name System)服务是和 HTTP 协议一样位于应用层的协议。它提供域名到 IP 地址之间的解析服务。
DNS 协议提供通过域名 查找 IP 地址,或逆向从 IP 地址反查域名的服务

各种协议与 HTTP 协议的关系

三次握手

URI 和 URL

与 URI(统一资源标识符)相比,我们更熟悉 URL(Uniform Resource Locator,统一资源定位符)。

统一资源标识符

URI 是 Uniform Resource Identifier 的缩写。RFC2396 分别对这 3 个单词进行了如下定义。

  • Uniform

规定统一的格式可方便处理多种不同类型的资源,而不用根据上下文环境来识别资源指定的访问方式。另外,加入新增的协议方案(如 http: 或 ftp:)也更容易。

  • Resource

资源的定义是“可标识的任何东西”。除了文档文件、图像或服务(例如当天的天气预报)等能够区别于其他类型的,全都可作为资源。另外,资源不仅可以是单一的,也可以是多数的集合体。

  • Identifier

表示可标识的对象。也称为标识符。

综上所述,URI 就是由某个协议方案表示的资源的定位标识符。协议方案是指访问资源所使用的协议类型名称。
采用 HTTP 协议时,协议方案就是 http。除此之外,还有 ftp、mailto、telnet、file 等。

URI 格式

表示指定的 URI,要使用涵盖全部必要信息的绝对 URI、绝对 URL 以及相对 URL。相对 URL,是指从浏览器中基本 URI 处指定的 URL, 形如 /image/logo.gif。
让我们先来了解一下绝对 URI 的格式

URI 格式

  • 协议方案
    使用 http: 或 https: 等协议方案名获取访问资源时要指定协议类型。不区分字母大小写,最后附一个冒号(:)。 也可使用 data: 或 javascript: 这类指定数据或脚本程序的方案名。
  • 登录信息(认证)
    指定用户名和密码作为从服务器端获取资源时必要的登录信息(身份 认证)。此项是可选项。
  • 服务器地址
    使用绝对 URI 必须指定待访问的服务器地址。地址可以是类似 hackr.jp 这种 DNS 可解析的名称,或是 192.168.1.1 这类 IPv4 地址名,还可以是 [0:0:0:0:0:0:0:1] 这样用方括号括起来的 IPv6 地址名。
  • 服务器端口号
    指定服务器连接的网络端口号。此项也是可选项,若用户省略则自动 使用默认端口号。
  • 带层次的文件路径
    指定服务器上的文件路径来定位特指的资源。这与 UNIX 系统的文件目录结构相似。
  • 查询字符串
    针对已指定的文件路径内的资源,可以使用查询字符串传入任意参数。此项可选。
  • 片段标识符
    使用片段标识符通常可标记出已获取资源中的子资源(文档内的某个位置)。但在 RFC 中并没有明确规定其使用方法。该项也为可选项。